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This note describes a special type of one-way, one-tape automata in
the sense of Rabin and Scott that idealizes some of the elementary
formal features used in the so-called ‘‘push-down store’’ programming
techniques. It is verified that the sets of words accepted by these
automata form a proper subset of the family of the unambiguous
context-free languages of Chomsky’s and that this property admits
a weak converse.

INTRODUCTION

This note is concerned with some relations observed by N. Chomsky
and myself between context-free languages and what will be called push-
down automata.'

Informally, a push-down automaton is a special type of one-way,
one-tape automaton in the sense of Rabin and Scott in which the memory
is a (potentially infinite) tape, used in a certain restricted manner. For
each successive letter of the input word, the word stored on the tape is
modified by deletion or adjunction at its right end. This is done under
the control of a finite state device which can scan the word stored on the
tape and carry some additional information. The input word is accepted
iff after reading its last letter both the word written on the tape and the
state of the finite part belong to a finite prescribed set.

This operation appears as an abstraction of some elementary features
of the programming technique known as ““push-down store” (Newell and
Shaw, 1957).

I am indebted to C. C. Elgot for enlightening discussions which have
lead to the clarification of many points and to a definition of push-down
automata which may be less unrealistic than the ones I had previously
considered.

1 Note added in proof: Our definition does not coincide with the one introduced
by Shepherdson and Sturgis (1963).

246



CONTEXT-FREE LANGUAGES AND PUSH-DOWN AUTOMATA 247

We recall that a context-free language on an alphabet X is a subset
L of the set F of all words in this alphabet that can be obtained by the
following procedure, which is a special type of a Post production:

Let & = {£}(1 =< j < n) be another set of letters and H be the set of
all words in the letters of X U =. In Chomsky’s terminology = is the
nonterminal alphabet. A grammar is an assignment to each & € E of
a finite set p; of words of H that does not contain the empty word
e or any word consisting of a single letter of E. Both X and = are finite.

Let Li be the least subset of H that contains & and every word
BB (b, W', h” € H) if it contains K'&R” (1 < j < n) and if & € p;.
Then by definition I = L; N F is the context-free language produced
by the grammar {p;}.

In the first part of the paper we verify the equivalence of this defini-
tion with another one which relates context-free languages with al-
gebraic formal power series in noncommuting variables. The treatment
given here is more elementary than that of Ginsburg and Rice (1962)
and the notation introduced in this part is needed later on. Furthermore,
except for trivial changes, the main bulk of the notation carries over to
the still simpler case of the power series.

In the second part of the paper we verify that the set of words accepted
by any push-down automaton (as defined here!) is a context-free lan-
guage and, as an example, we consider the simplest nondegenerate type
of such automata. The corresponding languages are called “standard
context-free languages.”

In the fourth part we verify a weak converse of the first property.
More explicitly, let ¥ and F’ be the set of all words in the letters of the
alphabets X and X’ (i.e., the free monoids generated by these sets).
A homomorphism (of monoid) 8: F — F’ is any mapping from F to F’
given by a mapping 6; from X to F’ and the rule that e = e (¢ = the
empty word) and that for all f = z;2;, -+ 2, € F, (m > 0), 6f =
leilelxiz ce 011‘5," .

We verify that for any context-free language L' < F’ one can find a
set X, a homomorphism 6: ¥ — F’ and a standard context-free language
L © F such that L' = 0L (= {6f:f € L'}).

A closer connection between push-down devices and context-free
languages is to be found in (Chomsky, 1962).

I. DEFINITIONS

Let X, E, F, H be as in the introduction. B(H) is the collection of
all subsets of H. We shall consider B(H) as an algebraic system (in
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fact, a semiring) with respect to the usual operations of set union and
set product (the intersection is not used).

We shall reserve the notation w, (resp. wr) for the projection of
B(H) onto the union of the elements of H of length <m (resp. onto
PB(F)). Thus, for H' € B(H), mH’ = ¢ iff e ¢ H' and we say then, as
usual, that H' is quasi regular.

For any n-tuple ¢ = (q1, ¢z, * * * , ga) of elements of B(H ), we denote
by A, the homomorphism (of semiring) of B(H) induced by the sub-
stitution {{;} — ¢;for1 < j < n.

Now let L be a (nonempty) context-free language with grammar
p = (p1, P2, -, P») and nonterminal alphabet =. We can assume that
no p; is empty and we recall that by hypothesis (1) p is quasi regular
(i.e., mp; = ¢ for each j); (2) no p; contains a word consisting of a
single nonterminal letter.

Let @ (resp. ®r) be the set of all quasi-regular n-tuples of subsets of
H (resp. of F'). For any mapping ¢ of B(H) and r € @, ¢r denotes the
n-tuple (¢ry, ¢rz, <+, ).

Now let ¢ be any element of ®. The conditions (1) and (2) on p
imply the following identity or all m = 0:

(*) TrtIND = Tmt1NrpqD-

Indeed, by the very definition of A, for each j and m, m’ = 0, A, p; C
Arpym:aPi @0nd 80, with obvious notations mmii\gp D Tmialr,.qP-

On the other hand, any word f of length | f| = m + 1 belonging to
some component of ¢ can only intervene in A\;p by being substituted
for some ¢ € E which (by condition (2)) is a factor of a word of length
at least two. Thus the word resulting from this substitution has length
at least |f| + 1 = m + 2, and it disappears after the application of
of T4l o

Similar reasoning shows that 7zAp = Nrpp-

Let us consider the sequence p(m) (m = 0) of elements of ® defined
inductively by p(0) = (¢)(=(¢, ¢, -+, ¢)), and, for each m = 0,
p(m + 1) = Npemp-

We prove that, for each m', m” = 0, mup(m’) = mwp(m' + m”)
and p(m’) € ®r.

The relations are trivial for m’ < 1. Assume that they hold form’ < m.
Then: wmup(m + 1) = Tupdpwp (by definition) = wmphs, p)P
(by (*)) = mmiiAr,pimimnp (by the induction hypothesis) = Tmi\pmimnP
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(by (*)) = mmup(m + m” + 1) (by definition). This gives the
first relation, and p(m 4 1) € ®@rfollows by induction from p(0) € @ .

Hence the Tt for m — « of p(m) is a well defined quasi-regular
n-tuple of subsets of F which we denote by p() and which satisfies
the identity p( ) = Ap)p. Let us verify that any p’ € ® which satisfies
p = \pp is equal to p( ). Indeed, if TP = wmp( ) for some m = 0,
the same relation holds for m + 1 since mpup’ = TmiNe, D =
Tmihr,p@P = mmip(®). Since the hypothesis of quasi regularity on
p’ implies mop’ = mop( ), the verification is completed.

It remains to show that L = =gL, is equal to the first component
of p( ).

For this, let \,"p = p and, inductively, N "'p = A,"(A\zp). The classical
identity AAy = N (valid for any g, ¢’ € ®) shows that, for all m,
mpp(m + 1) = wup),». Thus p(») can also be defined as
limy, e Ap -

Consider now p’ = p U (£) where (£) is the n-tuple ({&}, {&}, -,
{£.}) and where U is to be performed component-wise. By definition the
relation

mene '’ = 7Nl 'p is true for m’ = 0; if it is true for m’ = m,
it is still true for m” = m + 1 because, setting p” = Np.p" and p” = \,"p,
T D = wr (N5 (\pp)) = TRhD = Neppip

= NeporP = TApD = TG P,

Hence limy,,., m#Npp’ = p( ). Since our original definition amounts

to the definition of L; as the first component of lim,,.., Np:p” the result is
entirely verified.

For the sake of completeness we recall the proof of the following
theorem which is needed later on. To simplify notation, + and 2 are
used instead of U; R(F) is the set of all regular events on F; for each
q € B(F),q¢"* = 2{¢":n > 0}.

TaeoreM (Chomsky and Miller, 1956). If for all j (1 £ j < n)

pi = gio+ Ztpgii 1 S5 = 0

with g € R(F) forallj, j (1 £j < n), (0 = j = n), then every
component of p( ) belongs to K(F).

Proor: The result follows by induction on n from the unicity property
of p(«) mentioned above. Indeed for n = 1, p = quogt: satisfies
A\p = p and thus p(«) = p’ € R(F). Assume now the result proved
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forn < n’ and let (p;) (1 < j < n) be defined by
pn’ = Qn,Oq:,n + E{EJ ) qn,i’qjyﬂ: 1 é j, < n}

and for 1 < j < n, p; obtained by substituting in p; the right member
of this last equation for &, .

The hypothesis p(©) = Apep shows that p'(®) = p( ). However,
the grammar (p;’) (1 £ j < n) has only » — 1 nonterminal letters and
the result follows from the induction hypothesis.

II. PUSH-DOWN AUTOMATA

In all this section X = {2} and ¥ = {y} denote respectively the input
alphabet and the internal alphabet (used for writing on the tape).
The corresponding sets of words are F' and G. It can be proved that there
would be no loss in generality in card X = card Y = 2; it is not so for
card Y = 1.

If ® is a finite automaton with input alphabet Y, we denote by
xg the state reached after reading the word g € G, the initial state being
fixed. A standard argument shows that there is no loss of generality
(for our present purpose) in taking x as a finite homomorphism—-that
is, as a mapping x of G onto a finite monoid K such that for all g, ¢’,
g”, g” the relation xg = xg implies xg”g9” = xg¢”¢'g”.

For any K' € P(K) (the set of all subsets of K) and ¢ € G, pxg
denotes the longest left factor ¢’ of ¢ such that ¢ = ¢'¢” with x¢” € K’
U {xg}-

With this notation, an elementary x-push-down mapping u: G — G
is given by:

(1) a finite homomorphism x: G — K,

(2) a mapping a: K — G;

(3) a mapping 5: K — B(K).

Foreach g € G, ug = psyo(9-axg). In more concrete manner, one may
think of a device & which performs the following cycle of operations:

(1) R reads g and determines xg € K;

(2') R writes the word axg € G to the right of the word g;

(3") & reads from right to left the word g-axg erasing successively
each letter (eventually none) till it reaches a state belonging to the sub-
set pxg of K or until it has erased the whole word ¢-axg.

The word left is ug. Thus, either g is a left factor of ug (in symbols
g|urg) or ug|g; we shall refer to this situation by saying that g and
rg are comparable.
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Now let S be a finite set in which a subset § and an element s, € U
have been distinguished. We denote by U (resp. U, resp. U,) the set
of all pairs (s, g) with s € S (resp. s € S, resp. s = s,) and g € Q.
We call states the elements of U. It will be understood that for w, w’ € U,
the notation u |«  (resp. w + u') means that u = (s, g) ' = (5, ¢')
with g | ¢ (resp. with not g | ).

DeriNmTION 1. A Xx-push-down mapping u: U — U is given by:

(1) A mapping¢: (S, K) — Ssuch thatforallk € K, 0(8x,k) = 8 ;

(2) For each s € S an elementary x-push-down mapping us on G
with the restriction that for all w € Ua, s u = u.

For each u = (s, 9) € U, pu = (a(s, x9), usg). For simplicity, we
shall rather deal with the mapping u deﬁned as follows.

Let p'v = pu and for each ¢ > 0, " 'u = u(u’ u) The largest positive
i (possibly infinite) such that, for all positive 7' < 4, u”u ¢ U will be
denoted by j(u). Then

=@ Yu i j(u) < oo
= (s»,9) if j(u) = « and u = (s9).

Thus p* = piff forallu € U, pu € U.

DrriNiTION 2. A push-down automaton @ is given by:

1) The finite alphabets X and Y;

2) A finite homomorphism x: G — K;

3) A finite set S (with S, s, and U as above) and a x-push-down
mapping u: U — U;

4) A mapping 8: (S, X) — S with 8(sw, ) = s, identically;

5) An initial state uo € U\Us (ie., wo € U and uo ¢ Us); a finite
set Usin € U\U., of final states.

Yor each u = (s, g) € U and = € X, the “next state” wu-x
is u*(B(s, z), g). For each f € F, u-f = w if f is the empty word and
wf= (uf)ziff=fz(f €F,z € X). The set Acc @ of the words
accepted by @ is Acc @ = {f € F:uo-f € Uysin}.

Finally @ is simple iff S = S, and then, clearly, u =

According to Definition 2 the cycle of the automaton that is initiated
by each input letter consists of two successive operations: the mapping
B: (8, X) — S and the mapping p*: U — U; further, any state u € U,
is a sink, i.e. forallu € U, and f € F, one has u-f = u. Intuitively, one
might think of a device @ acting in the following manner for each state
(s, g) € U and incoming input letter z ¢ X:
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@, goes first to the state v = (B(s, ), g) and it performs the push-
down mapping pse..) which brings it to v’ = (s, ¢’), say. If s’ belongs
to S the cycle initiated by z is already completed and @ reads the next
input letter (this is always the case when @ is simple). If s does not
belong to S, @ performs p,r and goes to w” = p,u’. Again, if w” € U
the cycle is completed; if it is not so, @, goes on performing a succession
of push down mappings till, eventually, it reaches a state of U. Clearly,
in the general case, @, may never reach this subset and consequently it
may happen that @, does not read the input word further than z. Our
more formal definition of @ by the mapping p* is intended to obviate
this minor notational difficulty.

ProPERTY 1. For any push-down automaton Q there exists a simple
push-down automaton @ such that Acc @ = Acc@’.

Proor: The property amounts to the statement that for any given push-
down mapping u: U — U there exists a finite set S’, a surjection (i.e.,
mapping onto) ¢: 8’ — S and a push-down mapping u: (8, @) —
(8', @) that have the following properties:

(i) ™ =4

(ii) forallg € G, s’ € &, the relation x'(s’, g) = (s”, g') implies

* Y n )
p(ss,9) = (55", 9).

To simplify notation we first verify that there is no loss in generality
in assuming that u satisfies the conditions (1), (2), and (3) below. For
u=(s,9) € U, wewrite xu = (s,xg) and xU = {(s,k):s € 8,k € K};
xU = {(s,k):s € 8§, k € K}.

ConpiTioN (1). There corresponds to each (s, k) € xU a subset
K(s, k) of K (eventually empty) such that ¢ € x 'K(s, k) (ie.,
xg € K(s, k)) iff for all ¢’ € G one has pseng'ga(s, k) = ¢ (where
p(s, k) denotes the subset of K defined by the function 5 associated with
the elementary push-down mapping u,).

Indeed let the quotient monoid K; of G and the epimorphism (= homo-
morphism onto) x; : @ — K; be defined by the condition that, for any
9,9 € G, xig = xig iff for all K’, K” < K one has:

. . 4 ’
px'g | pxrg is equivalent to px'g | pxrg .

Clearly K, is finite and there exists a homomorphism %: K; — K such
that xx1 = x. Hence, any of the x-push-down mappings entering in
the definition of @ could have been defined as well as a x;-push-down
mapping. Thus we can assume that x has been replaced by x; in the
definition of @ and condition (1) is trivially satisfied.
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ConbrrioN (2). For each v € U, if u|pu then pu € U.

Indeed let ;¥ (u) denote the largest number ¢ (possibly infinite) such
that, for all positive ¢ < ¢, one has p*w ¢ U and u | u*u. By construc-
tion 77 (u) = j(u).

Let u': U — U be defined by:

pu = @ Py if 75 (u) if finite;
= p*u if 77 (w) is infinite.

Clearly 1'* = p* and it suffices to verify that ' is a x-push-down
mapping since, by construction, u’ satisfies Condition (2)

_Consider u = (s, g) such that j (u) > 1. Thusifj’ <j (u) the state
¥ has the form (s, gg) for a certain § € G. Induction on j " shows easily
that if xg = xg’ then u” (s, ¢") = (', ¢'g) with the same s” and the same
g. Hence j"(u) is a function of xu only.

It follows that the mapping u”: U — U, defined for all u € U by:

p’u = puif 77 (w) is finite;
wu = p*uif 7 (u) 1s1nﬁn1te

is a x-push-down mapping and, since p””~ = »*, we can assume from
now on that p = u”, i.e., that, for all u € U, j*(u) is finite.
Then, as we have seen for each v = (s, g) € U, the state

pu (= o ") has the form (s, pxgj) where s’ € S, K' c K, and
§ € G are functions of xu € xU only, and the verification is completed.

We point out that Condition (2) implies that, for each (s, g) € U,
the number j(s, g) — 1 is at most equal to the length | g| of g. Indeed,
if u(s, g) eE U, the state (s, g ) = u(s, g) is such that g is not a left
factor of ¢’ and, since g and ¢’ are comparable, this implies ¢’ | g and
g # g, hence |g'| < |g|.

CONDITION (3). There exists a x-push-down mapping # such that
p* = um

We assume (1) and (2). Let Uy = {u:j(u) = 1} = {upu € U} =
{u: pu = p*u}. By the definition of a x-push-down mapping there exists
a subset xU; of xU such that U; = {u: xu € xUi}. Whenu = (s,g) ¢ U,
we have seen above that the state (s, ¢') = u(s, ¢) is such that ¢’ | g.
Hence, introducing a new mapping g: U — U; by the rule that for all
u€eU:

gu=u if u € U,

gu = 7 i u ¢ U,
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we have identically p* = uz and the verification of (3) amounts to the
verification that @ can be defined as a x'-push-down mapping for a
suitable finite homomorphism x’.

For showing this, let ¥ denote the set of all quadruplesv = (s, k, s, k')
withs,s" € S,k, k" € K.V, C V is defined by the restriction (s, k) € xU; .

Forv = (s, k, s, k') € Vy (resp. € V) and n > 0, we define G,(v)
(resp. G(v)) as the set of all ¢’ € @ satisfying kxg’ = &’ which are such
that for some g € x 'k one has j(s', g¢) = n + 1 and u"(s', g9') =
(s, g) (resp.j(s, gg") arbitrary and u(s’, gg’) = (s, ¢)). Thusforv € V1,
Gl(v) = G(U)

Because of the definition of 7 it is easily seen that if ¢’ € G.(v)
(resp. € G(v)) then for all ¢ € x 'k one has j(s’, g¢') = n + 1 and
w'(s,99") = (s,9) (resp. u(s, gg") = (s, 9)). i

Forv € Vi (v = (s, k, s, k")) let G(v) be the union of the sets G,(v)
over all positive n; also let (v, v”) € w(v) mean that there exist
(s”, k") € xU (= {xu: w € U}) such that v' = (s, &k, §”, k")
(hence v € Vi) and v” = (s”, k”, §’, k). Thus, by construction,
G(v) € G(v) and, forn > 0,¢" € G,.1(v) iff there exist (v',0”) € w(v)
and a factorization ¢’ = ¢”¢g” such that ¢” € G,(v') and ¢” € G(v").

Introduce now a set {£,} of new letters indexed by the elements of
¥, and, for each v € V1, define

Py = G(v) + Z{EG@"): (v, 0") € w(v)}.

The system (p) = (p»)scv, defines a grammar and, by construction,
po( ©) = G(v) foreach v € V;.

However, for arbitrary v = (s, k, s’, k), the condition that a word
g’ belongs to G(v) can be explicitly stated as:

s=o(s,K); K =kxg; forall g€ xk, g= penggals k).

Thus, because of Condition (1), each of the sets G(v) (v € V;) is a
regular event. By the theorem recalled at the end of the first section,
it follows that each of the sets G(v) (v € V) is also a regular event. In
other terms, there exists a homomorphism x’ of @ onto a finite monoid
K’ and for eachv € V;a subset K'(v) of K’ such that G(v) = x "K' (v).

Since x’ may be chosen so that K’ admits K as a homomorphic image,
we may argue as in the verification of Condition (1) that in fact x = x'.
Under this hypothesis it is immediate that @ can be defined as a x-push-
down mapping and Condition (3) is verified.

The rest of the proof (i.e., that under the conditions (1), (2), and (3),
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the mapping u* = ui can be defined as a push-down mapping) is trivial
and it is omitted.

ProrERTY 2. For any push-down automaton Q the set Acc @ s a con-
text-free language.

Proor: By Property 1 we can assume that @ is simple. Hence for
eachs € 8,z € X, g € G, the operation performed by @ consists of a
transition s — s-x € S and of an elementary push-down mapping
Ms,z Oon G.

For simplicity we shall speak of the states as if they consisted only of
a word. Thus the length |u| of w = (s, g) is the length |g| of g; w is a
left factor of W' = (s' ¢') if g is a left factor of ¢’ etc.

Let f = z,%s, --- x,, be an input word of length |f| = m = 2. For
any state u we consider the m — 1 intermediate states vy = u-z; ,
Uy = U TyyTiy , * 5 Ume1 = U TyTiy - * Tip_, and we define min (u; f)
to be the minimum of their length. If u; (1 < j < m — 1) is such that
|u;| = min (u-f) and if further either j = m — 1 or |u; | > | ;| for
j <j = m — 1, we call u; the critical state (of f at w);f = Ty Tiy = * Ty
and f” = x; i, *+* Ty, are the critical factors (of f at u). Clearly
the critical state always exists (when f ¢ X) and it is uniquely de-
termined.

REMARK 1. The critical state u; of f at w is a left factor of all the inter-
mediate states and it is comparable with both w and u' = u-f.

Proor: The statement is trivial if f has length two, i.e., if f = z;z,, ,
because there is only one intermediate state, viz. u; = w-z;, , which, by
force, is the critical one. The fact that w and u;, and u;, and u' = -,
are comparable is a direct consequence of the definitions.

Assume now the property verified for all words of length <m (m > 2)
and consider f = fx,, of length m = | f| + 1. The intermediate states of
f at u are those of f at u plus the state @ = u,_1 = u-f. Hence we dis-
tinguish two cases:

(i) |%| > min (u, f). Then, u; (1 £ j < m — 2) is at the same time
the critical state of f and f.

(ii) |@| < min (u, f). Then % is the critical state of f. In case (i),
because of the induction hypothesis we have only to prove that u;
is a left factor of @ comparable with «' = u-f. The first statement follows
directly from the hypothesis that @ is comparable with u; and that
[u] | < |%]. The second statement follows from the first, the fact that
u = 4-x;, and the remark that if a is a left factor of b and if b is com-
parable with ¢ then in turn a is comparable with ¢. In case (ii), the in-
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duction hypothesis and |%| < |u;| show that @ is a left factor of u;,
hence a left factor of every intermediate state of f. By our last remark
above it follows that 4 is comparable with « and since % is comparable
with ' = u-z;, , the verification is completed.

Let us introduce the notation C(u, u’, n) for denoting the set (even-
tually empty) of all input words f # e such that u-f = «’ and either | f|
= 1 or min (u, f) = n. The symbols + and = denote disjoint union of
sets. Finally | a| is the maximum of the lengths of the words «(s, k)
used in the definition of the push-down mappings p. Thus for any
and f € F of length at least two, we have min (u, f) < |a| 4+ | u| since
this is an upper bound to the length of the first intermediate word. Our
definition of the critical factors is summarized by the following relations:

REMARK 2. For any triple (u, u', n)

Clu,w,n) = X N Cu, u'n)
+ Z{C(u, w’, [ )C(u", ¥/, [w” | + 1):u” € U,
n=|u| = |ul+lal}

where ={ } is understood to be ¢ unlessn < |u| + |a].

Proor: The left member is contained in the right member because any
f € C(u, ', n) of length two or more has critical factors f* and f” and a
critical state u” satisfying the condition indicated.

Conversely if f' € C(u, u”, |u”|) and f” € C(u",u, | v’ |+ 1)
for some ” such that » < | w”| < |u| + a, the product f = ff”
belongs to C'(u, »’, n) and has w” as its critical state. Finally, the right
member is a disjoint union of sets because of the unicity of the critical
factorization.

Let J; (resp.J,) be the set of all triples (u, u’, n) such that C(u, u’,n)
is a nonempty set of words which can be left (resp. right) critical factors
of other words. According to the definition and to Remark 1,
(u, w',n) € J; (resp. € J,) iff C(u, w’,n) # ¢, uand v’ are comparable,
n = |u'| (resp.n = |u| + 1).

For fixed d > 0 we consider the following subsets of J; U J, :

Jl+ = {(u)u’rlul‘):[ul = lu,l}

I8 = {(u, o, |u' )i |u| = 4| + d}
I = {(u, o, lu| + 1) u] = |4}
I = {(u, W, |ul + 1): || = |u| + d}.
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REMARK 3. For each finite d there exists only a finite number of distinct
sets C(u, u', n) with (u, w',n) €J(d) =J;F UJ*UJ,~ UJM

Proor: For any quadruple of states of the form v = (s, g¢), & =
(s,d9),4 = (s, g¢”), @ = (s, §g”) with xg = xg, the definition of
pushdown mappings and the hypothesis that x is a homomorphism
shows that

Clu, v, gl +n') = Ca,d,|g|+n)n 20).

This proves directly the statement for J;* U J}. For J;* we need to
observe first that, if | u | < |« |, C(u,u,|u'|) £ ¢onlyif |u'| < |u|+
| a|. For J,” it suffices to check that (with x; as defined in the proof
of Property (1)) the relations x:¢ = x:1§, x1¢ = x1§ imply identically

C((s, 99), (s, 9), 1gg’' | + 1) = C(s, §7), (5, O, |37 | + D).

REMARK 4. Each set C(u, ', n) is a conlext-free language.

Proor: Let the triple (u, u’, n) = jo be fixed. Let d = max(] u| — n,
|4’ | — m, | a|) and consider a minimal set J* of triples (containing j,)
such that any set C(j) with j € J(d) = J(0) U J(1) --- U J(d) is
equal to one and only one set C(j') with j/ € J*. By Remark 3 we know
that J* is finite. Furthermore, by construction, any ecritical (left or
right) factor of a word from a set C(j) with 7 € J(d) or j = j, belongs
itself to some set C(j') with j/ € J(d)—hence to some set C(j”) =
C(5)) with 5 € J*. Hence, by Remark 2, there corresponds to each
j € J* an equation

C(j) = X; + 2{CG)CG"): (7, 5") € w(i)}

where X; = X N C(j) and where w(j) denote a finite set of pairs of
triples 7', 77 € J*.

We introduce a set = = {£}(j € J*) of new letters and, for each
j € J* we define the set p; as the union of X; and of the products &£~
where (5',7”) € w(7). This reduces the problem to the proof of equiva-
lence of the two definitions of a context-free language described in the
first part of the paper.

Taking into account that the set of all context-free languages is closed
under (finite) union, Property 2 is verified.

III. EXAMPLE

Let us recall briefly the definition of the free group I' generated by a
set Y/ = {ys: 1 <4 =< n}. Let Y consist of 2n letters y; (s = =7,
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1 =4 < n) and say that a word of G (the set of all words in the letters
of Y) is reduced if it does not contain a pair of adjacent letters having
opposite indices. Clearly to each g € @ is associated a unique reduced
word 7g obtained by successive cancellation of such pairs of adjacent
letters. For instance,

T(Yy-sysy—1) = (Y1) = e

and

T(YWey—y-2) = YiyYsy—1y-2 .

The homomorphism v, : @ — T is defined by vog = vog’ iff rg = 74
We shall identify I" with the set 7G of all reduced words of G endowed
with the (associative) multiplication r(rg-¢") (= 7(gg’)).

Thus, in particular, yoy—: = (yoy:)~ for all y; € Y. With this no-
tation, any homomorphism vy: F — TI' is given by a homomorphism
v': F — @ and the rule vf = vf iff vov'f = vo¥'f (ie., iff =v'f = /'f).

We verify that the inverse image v 'T” by v of any finite subset I of
T is a context-free language, by constructing a pushdown automaton Q.

For this, consider a state s, and, for each word v z; € yX, introduce
n; new states s;1, sj,2, -+ 8j,»; where n; is the length of the word ¥z .
Let S be the union of s, and all the states s;; and S consist of s, only.
The state s, is not needed.

Now, in the notation of Definition 2 we define for each z; € X,
B(so, z;) = s;1 and to each state s;;; we associate (1) a mapping
a: S — 8 defined by

08j,i = Sy A J < my;
= 8o l.f] = n;.

(We do not need to introduce K explicitly.) (2) A push-down mapping
u; on G where i(—n < ¢ = n) is determined by y; = y;,; (i.e., where
y; is the j'th letter of v'z;) and where for each y € G:

pg=9¢ if g=gy (¢ €G);
= gy; otherwise.
For instance, if ¥'z1 = y_iy. the resulting transformation on G is

pop—y and it has the following effect: g — ¢' if ¢ = ¢ yw—2; 9 — g've
ifg =gyiand ¢’ € Gy_s; g — gy_w in any other case.
Induction of the length of the input word f shows that if the initial



CONTEXT-FREE LANGUAGES AND PUSH-DOWN AUTOMATA 259

word stored in the memory is a reduced word ¢ € 7G, the word stored
after reading f is 7(gy'f). Thus, in particular, taking ¢ = e (the empty
word), Property 2 shows that for any finite subset I'' of T' the set v 'T" =
{f € F:~vf € T’} is a context language.

Clearly, for any regular event R on F, it is possible to add enough
new states to the finite part of the automaton that it accepts a set of
the form R N v '1".

Let us consider the special case where X = {z;:7 = ¢/, 1 < ¢ < n}
and v'z; = y; identically. Taking the empty word e as initial word and
the set {e} as set of final word, it is clear that the set of words accepted
by the automaton is v 'e, the kernel of the homomorphism v of ¥ onto
T' that satisfies identically (yz;) ™ = vyz_;. Thus we have (U,).

For all f, f', f” € F, any two of the following relations imply the
third one: f € v 'e; ff” € v e; fff” € v e.

In fact, it can be proved that v ‘e can be defined abstractly as the
least subset of F that satisfies (U,) and that contains e and every prod-
uct zix; (1 =7 = n).

We construct explicitly the grammar defining v 'e. For each
i (i = 1,1 £ 4 = n)let D; denote the set of all f € z.F N v "¢ which
are such that f = f'f”; f', f” € v 'e implies f' or f” = e. Intuitively,
f € D; iff the first letter of fis x; and if the first return of the internal
memory to the empty word occurs at the last letter of f. Thus f € D,
implies f = .f'z_; and either f' = e or f’ = fify - -+ f, where fi € D;, ,
fo € Dj, --- fu € Dj, or in more concrete manner, where the words
fi are characterized by the fact that at that end of their last letter
(when reading f) the word stored in the memory is reduced to the letter
z; . Clearly this factorization is unique and our hypothesis that the
memory is never empty before the end of f implies that ji, 72, « ** ,jm #
—1. Conversely, if D/ = ={D;:j # —i}, any word of the form z.f z_;
belongs to D; if f is a product of words from D,’. Hence:

r¥%
D;=zg i+ zD; 2

where D;* is defined by D;* = D, + D:*D/.
Introducing 2n new variables £; and £* we deduce the 2n equations:

£=aw + kv 8= (e + &)y + v v # —d).

Finally, denoting by D* the set of the nonempty words of v 'e, we
have D* = (e 4+ D*)ZD; from which we deduce the equation

£ = (e + E*)Z{xix_i + zEir_ i = +7,1 247 £ n}
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in the new variable £* corresponding to D*. The fact that D* is related
to an algebraic system of equations goes back to Kesten (Kesten, 1959).
When the internal alphabet consists of a single letter, ¥ becomes a
homomorphism into a cyclic group and the memory can be identified
with an unbounded counter. The corresponding theory is due to Raney
(Raney, 1960) and it relates to the enumeration of well formed formulas
(free notation); an approach similar to the present one has been given
in (Schiitzenberger, 1959). As a point of marginal interest it may
be mentioned that the set D* (which we shall call a Dyck set) and,
more generally, the standard context free languages defined below, can
also be defined as the complement of the support of certain rational
(non commutative) formal power series. This results instantly from the
existence of isomorphic representations of the free group I' by integral
finite dimensional matrices (cf. e.g. Sanov, 1957).

For further reference we introduce the following definition in which
it is assumed that X = {z.;} as above.

DEFINITION. A standard context-free language is a set L = D*N R(X1,V)
where D* is a Dyck set and where the regular event R(X;, V) is given
by a subset X; of X, a subset V of X” and the relation R(X;, V) =
X,F\FVF (= the set of all words that begin with a letter from X; and
that have no factor belonging to V).

IV. A WEAK CONVERSE PROPERTY

ProrERTY 3. Each context-free language L can be represented as the ho-
momorphic tmage of some standard context-free language.

Proor: Let L be produced by the grammar (p;)(1 = j < n), the
notation being as in the first section of the paper.

Each word h € p; has a unique factorization h = fi't,fo £ifs « -
Fonkionfonra where fi's £y <o fony fonur € Fy Eiyy Eiyy =+, Eigy € B, 0 <
oh < d* and where d* = 1 4 max{sh: h € p;, 1 < j < n}. Eventually
h € F in which case b = O and h = f;'.

Let us introduce a set X’ of new letters z(j, &, d, ¢) indexed by quad-
ruples with 1 < j < n;h € p;;0 < d < d*; e = 1. For given j and
h € p; the writing ¢(h, d, d) denotes the word z(j, h,d, +1)& ,2(j, h,
d,—1)if 1 < d =< 6h and the word z(j, b, d, +1)x(j, h, d, —1) if 6h < d
< d*; finally,

q(h,0,0) = z(j, h,0, —1)q(h, 1, 1)q(h, 2,2) - - q(h, d*, d*)z(j, b, 0, +1).

Let F’ be the free monoid generated by = U X’ and define the homo-
morphism ¢: H — H in the obvious way: for all ¢ € &, ot = §; for
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1 §J§n,hel’u1 £d=s 1+5h75= +17¢x(j’h’d:e) =fi’;
¢x(j, h, d, ¢) = e for all the other elements of X'

Thusforallh € p;, we have b = ¢q(h,0,0). It follows that if the gram-
mar (p;)(1 £ j < n) isdefined by p;/ = {¢q(5,0,0): k€ p;}, we have for all
m > 0 the identity ¢p’(m) = p(m). Hence L = ¢p,’ () and, without
loss of generality, we shall assume henceforth that L is pi' () itself,
thatis, X = X'; H = H', (p;) = (p;)(1 £ j < n). Under this as-
sumption we shall write z(h, d, ) instead of z(j, h, d, €) since every
word h € P = U{p;:1 < j < n} appears in one and only one set p;
(1=j=n).

For1 £ d £ d = n we define:

Q(hy dr d,) = q(h: d’ d)Q(hy da+ 1: d+ 1) te Q(h7 d,’ d,)

(Thus g(h, d, d’) is defined only when none or both of d and d’ are
0.) Finally:

Q = {qh,d,d):heP, d=d =0 or 1=d=<d <d"
T = (Apera(h, d, d'): q(h, d, d') € Q).

We now define the standard (right) context-free language DN RN H;
by:

(i) D is the Dyck set D = {f € F:f £ ¢; vf = e} where the homo-
morphism vy: H — T is defined by:

forall £ € &, yE=¢e
forall z(h,d, ¢) € X,  (yz(h, d, )™ = yz(h, d, —e¢).

(i) R is the set of the words f € F such that each of their factors of
length two belongs to V = V'U V”U V” where:

V' is the set of all products z(h, d, +1)z(h’, 0, —1) and z(k’, 0, +1)
z(h, d, —1) for which d, h, and &' are such that q(k, d, d) =
z(h, d, + 1)&,2(h, d, —1) with b’ € pj, .

V” is the set of all products z(h, d, +1) z(h, d, —1) with h € P and
oh < d < d*.

V" is the set of all words (k, d, —1)z(h, d’, —1) with & € P and
either0 < d<d =d+1=d*ord =d*andd = 0.

(iii) H;(1 £ 7 = n) is the set of all words of H whose first (left)
letter has the form z(h, 0, —1) with & € p;.

We shall use repeatedly the fact that if the n-tuple ¢ =
(a1, @z, * -+, ay) of elements of H is such that a,, az, --+, a, €7 e
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(for short, if @ € (v "e)) then, for any h € H, the two relations vk = ¢
and \,i C v e are equivalent.

Now we have:

(1) Foreachj (1 £ 7 = n),pj(w0) = TN Hj.

This is a direct consequence of Q@ N H; = P and the definition of 7.

(2) T<c DN R.

It is clear that p(0) < (DN RN H;) (i.e., for each 7, p;(0) < DN
RN H;). Assume p(n’) < (DN RN H;) proved for n £ n. Since,
trivially, @ < v e, it follows that Apmg < D for each ¢ € Q; hence, in
particular, p;(n + 1) € D for each j (1 < j < n). Further, every factor
of length two of a word of the set M\,yq(q € Q) is a factor of a word
contained in one of the sets p;(n) or belongs to V. Hence \pmg C R
and, in particular, p;(n + 1) € Rforallj (1 = j < n). The fact that
pi(n) < H;, identically is trivial and the result follows by induction
on n.

Since (1) and (2) show L C pi(«) C DN RN Hyand TN H, C L,
the verification of Property 3, i.e.,of L = DN RN H, , will follow from:

B)DNRCT.

Let f € DN F. It is trivial that f € T for | f| < 2. Hence we can
assume the result proved for ail f* € F of length <n and |f| = n > 2.

We consider the factorization f = ¢'g”(¢’, ¢” € F) where ¢ is
defined as the shortest left factor of f that belongs to D. Since f € D,
this implies vg” = (v¢') ™vf = e and we distinguish two cases:

(i) g” % e. Then g” € D;|g |, |9”| < m, and, by the induction
hypothesis, there exist two elements ¢, ¢” € Q such that ¢’ € Apwyq’
and ¢” € N\pwq”. Let z(h', d', €) and z(h”, d”, ¢’) denote re-
spectively the last (right) letter of ¢’ and the first (left) letter of ¢”.
By the definition of @, we have

1=d £d* and ¢
1<d =d* and ¢ =+1 or & =0 and ¢ = —1.

However, ¢'¢” € R implies v = z(b/, d’, )x(h”, d”, &) € V.
Obviously v ¢ V' U V”. Hence » € V” and, thus, h = b = h”,
d” =d + 1, = —1,¢ = 41. This means that ¢'q” = g(h, dy, d;) €
Q for some di, dy. Since, now, f € Ayw)q(h, di, dp), the result is
verified in this case.

(ii) ¢” = e, thatis, f = ¢

Since | f| = » > 0, thisimpliesf = af'bwitha,b € X, f ¢ F,|f'| > 0.

=1 or d =0 and ¢ = +1; similarly:
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Because of the definition of v, vf = e and the hypothesis that f has no
left factor in D imply vf = vab = e. Thus f' € DN R and, by the in-
ductior}‘= hypothesis, f' € A\peoyg(h', d, d') for some B’ € P,0 <d <
d = d*

It follows that f = z(k', d, e)f”z(h, d’, €) either with 1 < d <
d <d*e=+41, = —lorwithd =d =0,e = —1,¢ = +1. Let
v = azx(b', d, ¢), v = x(h, d’, €)b. Since f € R, both belong to V.
Clearly v, v’ ¢ V”. Further, v, v’ ¢ V” because, for instance, v € V”
wouldimply 1 £d <d £d*e= 41, e=—l.a=2z(h,d— 1, —1),
hence b = z(h',d — 1, +1) (since vb = (ya)™') and, finally, o € V”
giving d = d — 2, in contradiction of d < d’. Thus, v, v’ € V', that is,
f = a(h, &, +1)fz(h, &, —1) and f* = z(k, 0, —1)f"z(k’, 0, +1),
where h, b’ and d” are such that ¢(k, d”, d”) = z(h, d”, +1)¢z-
(h, d”, —1) with b’ € p;. Thus f € A\peyq(h, d”, d”), concluding the
verification of Property 3.

ReMArK. In the case of formal power series over a ring A, the sets
p; (1 £ 7 = n) defining the grammar are replaced by the elements
p; = Z{ajh:h € p;} (witha;;, € A) of the free algebra over A generated
by X U E. It is trivial that Property 3 and its proof remain valid pro-
vided that the homomorphism ¢ is replaced by a homomorphism ¢
sending the large algebra (over the integers) of the free monoid generated
by X' U E into the large algebra (over A) of the free monoid generated
by X U E. For this, it suffices to replace ¢ by @ in all the definitions
except for the conditions ¢z (7, h,0, —1) = ¢ (1 = j = n, h € p;) which
have to become @x(j, h, 0, —1) = a;.
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