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1. RaTIONAL SETS

Let M be a monoid, i.e. a set with an associative multiplication and a two
sided unit. The class of rational subsets of M is the least class & of subsets
of M satisfying the following conditions:

(IR) The empty set is in &;
(2R) Each single element set is in &
(3R) If X,Yed& then XU Y €S,
(4R) If X, Y e & then XY €¢;
(5R) If Xe& then X* 6.
We recall that
={m|m=uxy,xeX,ye Y},
X* == submonoid of M generated by X.

Kleene’s theorem asserts that if 2/ is free and finitely generated, then the
rational sets are precisely the subsets of M recognizable by finite state
automata.

Inspired by the notion of unambiguous context-free languages as introduced
by Chomsky, we define the smaller class of unambiguously rational subsets of
M by leaving conditions (IR) and (2R) as they are but replacing conditions
(3R)-(5R) by stronger conditions (3UR)-(5UR) as follows:

(BUR) IfX,Yefand XNY = g then XU Yes;
(4UR) If X, Yed& and the product XY is unambiguous (i.e.,
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174 EILENBERG AND SCHUTZENBERGER

8y, = xy, for x,x,€X,y,,9,€Y implies x, = x,,y; = ¥,), then
XYed;

(5UR) If X €& and X is the basis of a free submonoid X* of M, then
X*ed.

Unamsicurry THEOREM. In a free momoid M every rational set is
unambiguously rational.

This theorem is stated here for background only as it will not be used in
the sequel.

The conclusion of the theorem is false without the assumption of freeness.
Indeed let M be the monoid obtained from the free monoid on three generators
by collapsing to a single point the ideal I = {uwwv | w3~ 1}. In M every
cyclic submonoid is finite and therefore every unambiguously national set is
finite. However X\J is known to be infinite [/, p. 30, Satz 18] so that M is
infinite. Since M is finitely generated, it is rational without being
unambiguously so.

For future use, we tabulate here some elementary properties of rational
sets.

(1.1) If X is a rational subset of M, then there exists a finitely generated
submonoid M’ of M containing X.

(1.2) M is a rational subset of itself if and only if it is finitely generated.

(1.3) If ¢: M'— M is a morphism of monoids and X’ is a rational
subset of M’, then X = @X’ is a rational subset of M.

(1.4) If o : M’ — M is a surjective morphism of monoids and if X is a
rational subset of M, then there is a rational subset X’ of M’ such that
X = pX'.

(1.5) If X,;,X, are rational subsets of A, , M, respectively, then
X, X X, is a rational subset of M; X M, .

2. ComMuTATIVE MoONOIDS

The objective of this paper is to study rational subsets in commutative
monoids. We shall use additive notation throughout. In line with this in
conditions (4R) and (4UR), XY is to be replaced by X + Y.

The main result of this paper is that in all commutative monoids, rational
sets are unambiguously rational (Theorem IV below).

The study of rational sets in a commutative monoid M is simplified by
the following notions. A subset

X =a+ B* @.1)
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with e € M, B C M, B finite, is called linear. Here and in the sequel we write
a + B* instead of {a} + B*. If further the sum in (2.1) is unambiguous and
the elements of B are linearly independent (i.e., B* is a free commutative
monoid with basis B), then X is called simple. If B = {b, ,..., ,} is a set of 7
elements, then every element x € X may be written as

x=a+nb 4 -+ nb,

with #, € N (i.e., n; = 0). If X is simple, then n, ,..., n, are unique.

A finite union of linear sets is called semi-linear. A finite disjoint union of
simple sets is called semi-simple.

Clearly every semi-linear set is rational and every semi-simple set is
unambiguously rational. The converse is also true. To see that, let &
(respectively &’) denote the class of semi-linear (respectively semi-simple)
subsets of M. Clearly & satisfies conditions (I1R), (2R) and (3R) while &
satisfies conditions (1R), (2R), and (3UR). Next assume that

X =U(a+B*, Y=u(y+D¥ 2.2)

the unions being finite as well as the sets B;, D;. Then

X+ Y =Ula +¢) +(B; U D)* 2.3)

%5

which shows that X + Y is semi-linear, If in (2.2) X and Y are given in
semi-simple decompositions and if the sum X + Y is unambiguous, then
the union in (2.3) is disjoint and the sets in brackets are simple. Thus X + Y
is semi-simple.

Next note that X* = E* where E = {J [{4;} U B;]. Thus X* € & so that
& satisfies condition (5R).

Suppose now that the decomposition of X given in (2.2) is semi-simple
and that X is the basis of a free submonoid X* of M. Since M is commutative,
it follows that X is a single point and X* is simple. This concludes the
argument.

3. TueE MAIN REesuLTs

‘We recall that a congruence Q in a monoid M is an equivalence relation in
M which when viewed as a subset of M X M is a submonoid.

TueoreM 1. Every congruence Q in a finitely generated commutative
monoid M has a rational cross-section; i.e., a rational set containing exactly
one element from each equivalence class mod Q.
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TreoreM I1. Ewery congruemce Q in a finitely gemerated commutative
monotd M is a rational subset of M X M.

Tueorem II1. If X and Y are rational subsets of a commutative monoid M,
then their intersection X N'Y and difference Y\X also are rational subsets of M.

Tueorem IV. In a commutative monoid M every rational set is unambigu-
ously rational.

Sections 4 and 5 are devoted to preparations. Theorem I is proved in
Section 6. In Section 7 the important notion of a slice is introduced and
Theorem II is proved in Section 8. After more preparation in Section 9,
Theorems IIT and IV are proved in Section 10. The proofs of these theorems
for finitely generated free monoids are independent of Theorems I and II.
Theorems I and II are used to pass to arbitrary commutative monoids.
Sections 11-14 are devoted to corollaries, counterexamples, and other
applications.

Theorem III, in the case of finitely generated free commutative monoids,
was proved by Ginsburg and Spanier [2]. Some of their arguments are
reproduced here in order to make this paper entirely self-contained.

4. ORDER PROPERTIES OF N¥

We denote by Z* the free commutative group on % letters. The elements of
Z* are then n-tuples x = (xy ,..., &) of integers. The conditions 0 < #;,
f = 1,..., k, determine the submonoid N* which is the free commutative
monoid on % letters.

In N* we define the (partial) order x < y by the condition x; < y; for
i = 1,..., k. We shall write x < y if x < y and x £ y.

Let X C N* and let y € N® The sets

Xv={x|xeX,y<a}, X,={x|xecX ynon <ux}
will be called the upper and the lower part of X relative to y. Clearly
XV=y+(X—1y) (4.1

where X —y = {&!| 2 € N*, z + y € X}. The lower part X, will be decom-
posed into disjoint components as follows.
Consider all pairs

Gl <i<hO<s<y, (4.2)
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and define
Yis = (Y1 veer Yic1 s S Oy, 0) € NE,
If x € X, , then there exists exactly one pair (i, ) such that
¥y <% for t<i, X, =5 <y
or equivalently
X =y + & with x'e N* x;/ = 0.

If we denote by N;* the submonoid of N* determined by the condition
x2; = 0, then we find that X, is the disjoint union of the sets

Yis + (X — yi5) N N 4.3)

These are the components of X, .

This decomposition of X according to an element y € N* will be used
systematically as a tool in the proofs. As a first example, we prove (the well
known)

ProrosiTioN 4.1. Every set X in N* of mutually incomparable elements
18 finite.

Progf. Let y e X. Since the elements of X are incomparable, we have
X —y = {0} and thus

XV =y+ (X —y ={y

For any (7, 5), the set X — y,, is composed of mutually incomparable elements
and thus the same holds for (X — y;,) N N;%. Thus by recursion, this set is
finite. Consequently, all the components of (4.3) are finite and so is X.

ProrosiTiON 4.2. For any subset X of N*, the set V of minimal elements
of X is finite and X CV + N*,

The finiteness of V follows from Propositioﬁ 4.1. The inclusion is clear,

5. IbpeaLs
A subset I of a commutative monoid M is called an ideal if I + M C 1.

ProposITION 5.1. In a finitely generated monoid M every ideal I has the
form F + M where F is a finite subset of M.
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Proof. Since M is finitely generated, there exists a surjective morphism
¢ : N*— M. For every ideal I in M the set p~I is an ideal in N*, Thus it
suffices to consider M = N¥,

Let then I be an ideal in N* and let F be the set of minimal elements in I.
Then by Proposition 4.2, F is finite and J CF + N*. Since I is an ideal, we
have F + N*CI 4 N*CI. Thus I = F 4 N¥,

ProOPOSITION 5.2. In a finitely generated commutative monoid M the
tdeals satisfy the ascending chain condition.

Proof. Let I,CIL,C--CI,C - be ideals in M, and let I = 1I,.
Then I is an ideal in M. Thus I = F 4- M where F is a finite subset. Con-
sequently, F C I, for some integer n. Thus ICI, and I =1I,,.

6. ProoF oF THEOREM I

ProposITION 6.1. Every congruence Q in N* has a cross-section A such
that N®\A is an ideal. ’

Proof. In N* we consider the lexicographic order x < y given by x = y
or

By =Ny e Xy = Vi ¥ <Yi
for some 7 = 1,..., . We note that this is a well-ordering of N* satisfying

x<Lye>xt+tas<y+z2

for any x,y, € N*.
Given a congruence Q in N* and given x € N* let px denote the smallest
element in the lexicographic order such that px ~ x (mod Q). We thus have

px < X, X ~ px, ppx = pX.
Let », y € N%. Then p(x + y) ~ x -+ y ~ px - py and therefore
px +3) < px + py. (6.1)
Let
A = {x|xe Nk x = px}.

Clearly 4 is a cross-section for Q. Let x € N¥\4, y € N*, Then px < x, px 7 x.
Consequently

plx+3) <px+py <x+py <x+y.
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Since px 7~ x, we have px + py 7~ x + py. Therefore, p(x +y) Z & + ¥
so that x 4+ y € N¥\4. Thus N¥\4 is an ideal.

Proof of Theorem 1. LetQ be a congruence in a finitely generated monoid
M. Choose a surjective morphism ¢ : N* — M and let Q' be the congruence
in N* defined by

X~y <> X ~ gy

Let A4 be the cross-section for Q' as given by Proposition 6.1. Then clearly
oA is a cross-section for Q. To show that @A is rational, it suffices to show
that A4 is a rational subset of N Since J = N*\4 is an ideal, it follows
from Proposition 5.1 that I is rational. Since 4 = N*\I the rationality of 4
follows from Theorem III. The reader will have to be careful to note that
Theorem I is not used until after Theorem III has been proved.

7. SUBTRACTIVE SUBMONOIDS AND SLICES

Let S be a submonoid of a commutative monoid M. We shall say that .S
is subtractive, if x, x +y € S, y € M, imply y € S. This may equivalently be
rephrased as S — SCSor § — S = 8.

ProrosttioN 7.1. Every subtractive submonoid S of a finitely generated
monoid M 1is itself finitely generated.

Proof. Let ¢ : N*— M be a surjective morphism and let §' = ¢~18,
Then S’ is a subtractive submonoid of N* and if S’ is finitely generated,
then so is S = @S’. Thus we may assume that M = N*

Let A be the set of all minimal elements in S\{0}. Then A4 is finite and
A*C 8. Assume A* £ S and let x be a minimal element of the set S\A4*.
Then a < x for some element a € 4, so that x = a + y with y € N*. Since
S is subtractive, we have ye€S. Since y < x we have ye A*. Thus
x = a + y € A*, a contradiction.

A slice in a commutative monoid M is a subset S such that s, s + x,
s +yeSimply s + x + y € S. Equivalently, S is a slice if and only if for
every s € S the set S — s is a submonoid of M. An element s of a slice S is
called stable if the submonoid S — s is subtractive.

ProrosiTiON 7.2. Every slice S in N* has a stable element.
Proof. For every s e S, consider the ideal

I, = [(S — s\{0}] + N&.
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Lets < ¢, seS,andletye S —s. Thens’ = s+ xand s + ye S. Thus
s +y=s4+x+yveS or equivalently ye S — . Thus S —sCS —
sothat I, C1I.).

Since the ideals in NN* satisfy the ascending chain condition (Proposition
5.2), there exists s €.S such that I,/ = I, for every s’ € S, s << s’. We shall
show that such an s is stable.

Indeed, let x,x + y €S — 5. If y = 0 then y € S — s and we are finished.
Thus, we may assume y 7 0. We have s +xcS and s +x +ye S so
that yeS — (s 4 x). Since y % 0 we have yel,, = I,. Consequently,
y=u-+w with uc S — s, we N*, u 3£ 0. Further, we may choose such
a decomposition of y with a shortest possible w. If w = 0 then y€.§ —
and we are finished. Thus, we may assume @ 7 0. Since y + s € .S, we have
u+w+seS;ie, weS — (s 4+ u). Since w7~ 0 and s + u€ .S we have
wel,, =1I,. Thus w =4+ o with 4'€S —5, 4’ £ 0. Then

y=u+u +u with ut+ueS—s.

Thus contradicts the assumption that @ was the shortest possible.

ProposiTiON 7.3. A4 slice S in a finitely generated monoid M is a rational
subset of M.

Proof. Let ¢ : N* — M be a surjective morphism. Then 1§ is a slice
in V%, and it suffices to prove the rationality of ¢~1S. Thus we may assume
M = N¥. By Proposition 7.2, S contains a stable element y. We decompose
S according to the element y. The upper part is

y+(S—y) (7.1)

Since S — y is a subtractive submonoid of N¥, it is finitely generated by
Proposition 7.1. Thus S — y is rational and so is (7.1). The components of
the lower part are

Yis + (S —¥is) NN (7.2)
Each of the sets S — y,, is a slice. Indeed, if 5, s + x,5 + 2.5 — y,,, then
S+ Yig, S+ +x,8+y,,+2€S8. Then s+ y;;, +x 4 28 so that
s+x+ 28—y, . Consequently (S — v,,) "\ N/ also is a slice. This
slice being in N*-! we may assume by induction that it is rational. Thus
(7.2) is rational, and therefore S is rational.

8. Proor oF THEOREM II

The theorem follows directly from Proposition 7.3 in view of

ProrositioN 8.1. A congruence Q in a commutative monoid M is a skce
in M X M.
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Proof. Let (%, %), (% + ¥, % + 3), (%, + 21, %2 + 22) €Q. Then
xl+y1+zl~x2+y2+z1~x1+y2+zl~x2—]—y2+zz.
Thus (%1 + 31+ 2, % + 3, + 2,) €Q.

9. PrEPARATION FOR THEOREMS III anp IV

ProrosiTION 9.1 (Ginsburg-Spanier). If X = a + B* is a linear subset
of Z¥, then X is the finite union of simple sets ¢ + D* with D C B.

Proof. Without loss of generality, we may assume ¢ = 0. Let
B =1{b,,..., b,}. If the elements of B are linearly independent, then X is
simple and there is nothing to prove. Thus we may assume that

tby + vt th = typbey + 0+ b,
for some
0<g<p, (ty,t,)eN?, ¢ >0.

For j = 1,..., ¢ define
Aj = {Sbj | 0 < 5§ << tj}, Bj = B\{b]}
Y, = 4; + By*, Y=0%;

Arguing by induction on p, it suffices to show that X = V. Clearly 4, C X
and B; C X. Since X is a submonoid of Z¥, it follows that ¥; C X and thus
YCX

Letde X,d =Y rb;,r; 2 0.1f t; <r; forall j = 1,..., ¢ then we may
rewrite d as

d=3 (ri—t)b;+ 3 (n+t)b
i<e a<?

and thereby diminish the sum Y ;.,7;. Thus we may assume that r; < ¢;
for some j < ¢q. Then d = r,;b; + d’ for some d’ € B;*. Thusde Y;.

Lemma 92. Let M;,i=1,..,p, be commutative monoids and let
M =M, X * X M,. Let X;,CM,; be semi-simple subsets of M, such that
Y, = M)\X, also are semi-simple. Then X = X, X -+ X X, is a semi-simple
subset of M and M\X also is semi-simple.

Proof. By induction, it suffices to consider the case p = 2. We regard
M, and M, as submonoids of M in the obvious way. Then for

a + B*CM,, a, + By* C M,
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we have
(@, + B*) X (az + B,y*) = (ay + a,) + (B, VU By)*.

This shows that X = X; X X, is semi-simple. Further M\X is the disjoint
union

ViXY,uX, XxY,UY, XX,

so that M\ X also is semi-simple.

Since N = 1* and Z\N = (—1) + (—1)* we see that N and Z\N are
simple subsets of Z. Also N\{0} = 1 4 N is simple. Thus Lemma 92
yields the semi-simplicity of the following subsets of Z* ;

Zv, ZMNE, N» X NAN? x 0 for p-+q =~k 6.1)

Lemma 9.3. If X is a simple subset of Z¥, then Z¥\X is semi-simple.

Proof. Let X = a -+ B* with B a linearly ihdependent subset of Z*.
Since Z¥\X = a +- (Zk\B*) it suffices to consider the case a = 0, X = B*.

Let B = {b, ,..., b,}. First consider the case p = k. Let B° be the subgroup
of Z*. generated by B. Then

ZMB* = (Z¥B°) U (B°\B¥).

Since the union is disjoint, it suffices to show that each component is semi-
simple. Since b, ,..., b, are linearly independent, B° is isomorphic with Z*
under an 1somorph1sm mapping B* onto N, Since by (6.1), ZX\N* is semi-
simple, it follows that B°\B* is semi-simple.

Next consider Z¥B°. Since p = k, the quotient group Z¥\B° is finite.
Therefore Z¥\B° is a disjoint finite union of cosets ¢ + B°. Thus it suffices
to show that ¢ 4 B° is semi-simple. For this it is enough to show that B°
is semi-simple. However, B° a» ZF, so the conclusion follows from (6.1).

Next assume 2 = p 4 ¢, ¢ > 0. We can then find elements b, ,..., b;
so that the set C = {b, ,..., b;} is linearly independent. Then

ZMB* = (ZMC*) U (CH\B*).

By the above, Z¥\C* is semi-simple. The monoid C* is isomorphic with
N* = N? X N?under an isomorphism carrying B* onto N? x 0. Thus by
(6.1), C*\B* is semi-simple.

Lemma 94. Given a morphism @ : N — Z™ and an element ceZm™
the set

X={x|xeNex =c}

is semi-simple.
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Proof. If X is finite, then it clearly is semi-simple. If X is infinite, then
by Proposition 4.1, there exists elements x,x’€ X with x < »'. Thus
x +y = &’ for some y € N¥, y 52 0. Thus we have y = 0, gy = 0. For any
x € X we have a unique representation

x=ny+2 neN, zeX, ynon <=z

We thus have the unambiguous sum X = y* + X, so it suffices to prove
that X, is semi-simple. The (disjoint) components of the lower part of X are

Yis (X — i) O N
Since

(X —yi) "N ={x|xeNF, ox = c + @y}
these sets are semi-simple by recursion. Thus X, is semi-simple as required.

Levma 9.5. If X and Y are semi-simple subsets of Z* then so is X N Y.
Proof. We may assume that X and ¥ are simple subsets of Z*. Then
X = a + aN?, Y =b+BN¢
where o« :N?— Z% B: N?— Z* are injective morphisms. Define the
morphisms
o : NP X N — 7%  o&,y) = ox — By
T:N? X NO— 7% (%, y) = ax
and let
W = {(x5)|(x.9) € N* X N4, g(x,5) = b — a}
= {(%,9)/(%,5) e N* X Nt,a + ax = b+ By},
By Lemma 9.4, W is semi-simple. Further, a + W = XnNY. Since « and

B are injective, it follows that = is injective on the set W. Therefore a + +W
is semi-simple. :

10. Proor oF THeorems III anp IV

 We first consider the case M = ZF. Let then X be a rational subset of Z~
Then X is semi-linear and by Proposition 9.1, X is a finite union
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X, U - U X, of (not necessarily disjoint) simple sets. By Lemma 9.3 each
of the sets Z*\ X, is semi-simple. Therefore, by Lemma 9.5 the set

X = ZMX = () (ZH X))

is semi-simple. Since X' also is rational, by the above X = Z¥ X’ is semi-
simple. If ¥ is another rational subset of Z* then Y is semi-simple and by
Lemma 9.5 the sets

YNnX, Y\ X=YNnX

are semi-simple.

The next case to consider is M = N*. This follows from the case M = Z*
in virtue of the following observation: If a 4+ B* C N* for ae Z%, BC ZF,
then a € N* and B C N*. Clearly a € N*. Let b B. Then a 4 nb € N* for
all positive integers n. This implies that all the coordinates of b are non-
negative and thus b € N¥,

Next, consider an arbitrary commutative monoid M and let X and Y be
rational subsets of M. There exists then a finitely generated submonoid A’
of M such that X, Y C M’. Hence we may assume that M is finitely generated.

Let ¢ : N* — M be a surjective morphism and let Q be the congruence
in N* defined by

X~y Px = @y

Given any rational subset X of J, choose a rational set R in N* such that
pR = X. Then note that

X = o0 N (N* X R)]

where 7 : N®¥ X N* — NF is given by m(x, y) = x. Since by Theorem II,
Q is a rational subset of N* X N¥, it follows that =X is rational. If Y is
another rational subset of M, then ¢~'Y is rational. Since ¢ is surjective,
we have

XNY =g¢p ' XNeY], Y\X =g[pV\p7X]

so that X N Y and Y\X are rational. This concludes the proof of Theorem
111 in full generality. We note that Theorem I has not been employed.

To complete the proof of Theorem IV we need one more step. Conserving
the notation above, we apply Theorem I to obtain a rational cross-section 4
for Q. Then for any set X C M we have X = oW where W = 4 N ¢~1X.
If X is rational then so is ¢~1X. Then W is a rational subset of N* and
therefore W is semi-simple. Since W C 4, o is injective on W and thus W
also is semi-simple.
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11. CoroLrLARIES OF T'HEOREM III

CoroLrary IIL1. In a finitely generated monoid M the class of rational
sets is closed under Boolean operations. '

Indeed, M is then a rational set and therefore M\X is rational for every
rational set X.

Cororrary II1.2. If ¢ : M' — M is a morphism of commutative monoids,
M’ is finitely generated and X is a rational subset of M, then o—1X is a rational
subset of M'.

Indeed, consider the morphisms

piM —>M X M, px = (x, px),
y: M xXM-—>M, (%, y) = x.

Then ¢'X = 7Y where ¥ = uM’'N (M’ x X). Since M’ is a rational
subset of itself, uM’ and M’ X X are rational subsets of M’ x M., Thus, ¥
is rational and so is 7Y

CoroLrary IIL.3. If M’ is a finitely generated submonoid of a commutative
monoid M and if X C M’ is a rational subset of M, then X is also a rational
subset of M'.

In the previous Corollary, choose ¢ : M’ — M to be the inclusion
morphism.

Given subset X, Y of a commutative monoid M, we define

Y—-X={m|x+ meY for some x € X}.

CoroLLARY II1.4. If X and Y are rational subsets of a finitely generated
commutative monotd M, then Y — X is rational.
Indeed, consider the morphisms

(P:MXM_)M, (P(x9y)=x+y:
7 M X M—> M, (%, y) = y.
Then
Y — X =al(e V)N (X x M)],
which shows that ¥ — X is rational.
It should be noted that Theorem II is itself a corollary of Corollary II1.2,
Indeed, if Q is a congruence in M, consider the natural morphism

@:M— R =M|Q, and define y : M Xx M — R X R by y(m, , m,) =
(pmy , pmy). Then Q = 14 where 4 is the diagonal submonoid of R x R.
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Since M is finitely generated, so is R and thus also 4. Therefore, 4 is rational
and by Corollary II1.2 so is 14 = Q.

12. AsceNDING CHAIN CONDITIONS

ProrositioN 12.1. A rational slice S in a commutative monoid M is
finitely defined; i.e., there exists a finite subset F of M such that S is the least
slice in M containing F.

Proof. Since S is rational, it is the finite union of sets
a; + B;*, a;€ M, B;C M, B, finite.
Let
F ={{a;}V (a; + By).

Then FC S. Let S’ be any slice in M containing F. For each index 7 we then
have 2;€ 8" and ae; 4+ B;C S’. Thus B;CS — a; and since S —aq; is a
submonoid, we have B*C S’ —a;; ie., @, + B;*C.S’. Consequently,
SCS.

This, combined with Proposition 7.3, yields

CoROLLARY 12.2. In a finitely generated commutative monoid every slice
1s finitely defined.

An equivalent statement is

CoRrOLLARY 12.3. The slices in a finitely generated commutative monoid
satisfy the ascending chain condition.

In particular, for congruences, we obtain, by Proposition 8.1,

THeOREM V. Ewvery congruence Q in a finitely generated commutative

monoid M is finitely defined; i.e., there exists a finite subset F of M X M such
that Q is the least congruence containing F.

CoroLrArY V.1. The congruences in a finitely generated commutative
monotd M satisfy the ascending chain condition.

Given a congruence O in a commutative monoid M and given m e M,
define the congruence Q,, in M by setting

Qm = {(x’ y)l(x +my+ m) EQ}
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Clearly

Q9 COnCOmim = (D’ -
O is called cancellative it Q = Q,, for all me M.

CoroLLARY V.2. Let Q be a congruence in a finitely generated commutative
monoid M. The class of congruences {Q.}, me M, contains exactly one
cancellative congruence Q'. Further, Q,, CQ' for every me M.

The existence of Q' follows from the ascending chain condition. Since
QCQ', we have Q,, C0Q,,” = Q'. This implies the uniqueness of Q'

Theorem V and its corollaries were proved by L. Redei [3].

Theorem V may also be deduced from the Hilbert basis theorem as follows.
Let R be any commutative ring (with 0 7% 1). Writing the monoid M
multiplicatively, construct the R-algebra R[M]. Given a congruence Q in M,
let I{Q) denote the ideal in R[M] generated by elements x — y with (x, y) € Q.
We assert that

Q={xNxnyeMx—yeclQ)}. (12.1)

Indeed, let Q’ be the right-hand side of (12.1). Then Q’ is a congruence in
M, QCQ’ and I(Q') = I(Q). There results a commutative triangle of

surjective morphisms
M

M|Q —— M|’

from which we obtain the commutative triangle of surjective R-algebra
morphisms

RIM]

N

RIM|Q] ——7— RIM|Q’]

Since I(Q) = I(Q’) is both the kernel of R[x] and R[~], it follows that R[e]
is an isomorphism. It follows that g also is an isomorphism and thusQ = Q’.

It follows from (12.1) that the set of all congruences in M is mapped by
Q — IQ injectively into the set of ideals in R[M]. If M is finitely generated
and R is noetherian and R[M] also is noetherian and the ideals in R[M]
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satisfy the ascending chain condition. Thus the congruences in M also
satisfy the ascending chain condition.

The above proof was known to a number of mathematicians including
Peter Freyd and Michael O. Rabin.

13. OTHER APPLICATIONS

Call a commutative monoid M cancellative if x -y == x + z implies
y=u=z

TuroreM VI, The intersection M, N\ M, of two finitely generated sub-

monoids M, , M, of a cancellative commutative monoid M is a finitely generated
submonoid of M.

Proof. Choose morphisms
g N> M i=1,2

such that o, N* = M, for i = 1, 2. Consider the product N* = N* x N,
k = k, + k, and define

p:Ne>M i=1,2
by

Py 5 %) = Py .
Define

S = {x | x & N¥, yx = yx}.

Note that M; N M, = ,S = ,S. Thus it suffices to show that S is finitely
generated. By Proposition 7.1 it, therefore, suffices to show that S is a
subtractive submonoid of N*. Let then x, x + y €.S. Then

PrXy = Po¥s , P1¥y + P11 = PeXe + P2 .

Since M is cancellative, it follows that ¢, 9, = ¢,¥, ; i.e., y€ S.

The conclusion of Theorem VI is false without the assumption that M is
cancellative, Indeed, consider the “simplest” example of a noncancellative
monoid M given by three generators x,y, 2 and the single relation
x+y=x-+2

We may regard M as the quotient monoid of N3 by the relation Q defined
by the single pair (1, 1, 0), (1, 0, 1). The congruence Q may be made explicit
as follows: '

(a,b,¢) ~ (@', ¥,¢)
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if and only if either

or

This implies that x, y, # are pairwise linearly independent.
Let V = {x, y}* N {x, z}*. Viewed as a submonoid of {x, ¥}*, V' may be
identified with the submonoid of N2 given as follows:

V = {(a, b)\(a, b,0) ~ (@', 0, c')}.
Inspecting the congruence we see that we must have ¢ = a', b = ¢’. Thus
V = {(a, b)l(a, b,0) ~ (a, 0, b)}.
Again, going back to the congruence, we see that
V={abla=b=0 o a>0}.

~ This submonoid of N2 is not finitely generated since any generating set must
contain the sequence {(1, n)}.

TroeOREM VII. Let M be a finitely generated commutative monoid, X a
rational subset of M, and P a set of strictly positive integers. Then the set

PAX ={me M| pme X for some p € P}
is rational
Proof. Let @ : N*— M be a surjective morphism. Then ¢~ (P2X) =
P-Y(p~tX). Thus by Corollary IV.2, it suffices to consider the case M = N*.

Since P-Y{X U Y) = P-1X U P-1Y, it suffices to consider the case when
X = a + B* is simple with B = {3, ,..., b;} linearly independent. Let

C={ylpy=a+ Y nb;, forsome pecP and 0 < n; <p}

For y e C we have y < a 4 Y b, and therefore the set C is finite.

Since C C P-1X and pB* C B* for every p, it follows that C 4 B* C P-1X,
Conversely, let y € P-1X, Then for some pe P we have py = a + Y ¢;5,,
0 < ¢;. Write ¢; = n; + r;p with 0 < n; < p. Then

Py =a + Z n,-b,- +P (Z r,vb,-).

Thus setting b =Y rb;,, c =3y —b we have c€C,beB* y =c b,
Thus P*X = C -+ B* and P-1X is rational.
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The conclusion of Theorem VII is false without the assumption of finite
generation. Indeed, let M be an infinite set with distinguished elements 0, ,
O£ w Define0+x=x=x-+0and x4+y=w if x£0+#y. Then
M is a commutative monoid and X = {w, 0} is a rational subset of M. Taking
P = {2} we have P-1X = M which is not rational.

14. SoMeE COUNTEREXAMPLES

We first show that the hypothesis of finite generation is essential in all the
theorems and corollaries in which it is made.

In connection with Theorems I and II, consider a monoid M. Then the
only cross-section for the congruence Q = {(x, )} is M. Thus Q does not
have a rational cross-section. On the other hand, the congruenceQ = M X M
is not rational.

If M is a commutative monoid which is not finitely generated, then & is
rational subset of M while M = M\ @ is not. This shows that Corollary IL.1
fails.

In N2 consider the submonoid

Q=10,0;V[(1 1)+ N7

Clearly Q is a rational subset of N2 However, Q is not finitely generated, as
indeed any generating set for O must contain all the elements (n, 1) and (1, n)
for n = 1, 2,... . Therefore Q is not a rational subset of itself. Therefore,
Corollaries IT1.3 and II1.2 fail. Incidentally, Q is a congruence in N and is
defined by the single pair (1, 2). This shows that for a congruence Q, “finitely
generated”” is a much stronger notion than ‘“finitely defined.”

For Corollary III.4, consider a commutative monoid M which is not
finitely generated and which contains an element @ such that M + w = w.
Then taking X = ¥ = {w} we have Y\X = M. Thus X and Y are rational
while Y\ X is not.

For Theorem V and its corollaries, consider the free commutative monoid
M generated by the letters x;, ¥, , 2; , ¢ = 1, 2,..., and consider the congruence
O defined by the set of pairs (x; + 2;,9; + 2;), ¢ = 1, 2,.... Then for any
m € M the congruence Q,, is not cancellative. Therefore, Corollary V.2 fails
in M, and therefore, also, Corollary V.1 and Theorem V.

To conclude, we give an example of a submonoid M of N% which is not
rational. Let

M= {xy)y < *
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Consider the “slope” function defined on M by setting

#(0,0) =0
¢(x,y)=% if x#0.

Then ¢ is unbounded on M. However, on every set a + B* with a e N2,
BC N? B finite and @ + B* C M the function ¢ is bounded. Thus ¢ is
bounded on any rational subset of N2 which is in M. Consequently, M is
not rational.

In the same way, we can show that for every irrational number r > 0
the submonoid

M = {(x,y) e N4, y < rx}

is not rational.

w
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